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Abstract 

The Department of Defense (DoD) maintains thousands of Synthetic Aperture 
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individual algorithm methodologies and development techniques within the Automatic 

Target Recognition (ATR) community.  The Air Force Research Laboratory Sensors 

Directorate (AFRL/SN) has proposed the Virtual Distributed Laboratory (VDL) to 

maintain a central collection of the associated imagery metadata and a query mechanism 

to retrieve the desired imagery.  All imagery metadata is stored in relational database 

format for access from agencies throughout the federal government and large civilian 

universities.  Each set of imagery is independently maintained at each agency’s location 

along with a local copy of the associated metadata that is periodically updated and sent to 

the VDL. This research focuses on applying information retrieval techniques to the 

multiple heterogeneous imagery metadata databases to present users the most relevant 

images based on user defined search criteria.  More specifically, it defines a hierarchical 

concept thesaurus development methodology to handle the complexities of heterogeneous 

databases and the application of two classic information retrieval models.  The results 

indicate this type of thesaurus-based approach can significantly increase the precision and 

recall levels of retrieving relevant documents. 
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APPLICATION OF INFORMATION RETRIEVAL 

TECHNIQUES TO HETEROGENEOUS DATABASES IN THE 

VIRTUAL DISTRIBUTED LABORATORY 

I. Introduction 

The Department of Defense (DoD) maintains thousands of Synthetic Aperture 

Radar (SAR), Infrared (IR), Hyper-Spectral intelligence imagery and Electro-Optical 

(EO) target signature data.  These images are essential to evaluating and testing 

individual algorithm methodologies and development techniques within the Automatic 

Target Recognition (ATR) community.  The Air Force Research Laboratory Sensors 

Directorate (AFRL/SN) has proposed the Virtual Distributed Laboratory (VDL) to 

maintain a central collection of the associated imagery metadata and a query mechanism 

to retrieve the desired imagery.  All imagery metadata is stored in relational database 

format for access from agencies throughout the federal government and large civilian 

universities.  Each set of imagery is independently maintained at each agency’s location 

along with a local copy of the associated metadata that is periodically updated and sent to 

the VDL.   

Previous research [Ward, 00] in VDL focused on the integration of user profiling 

and user interface analysis to increase user productivity by decreasing query input time.  

It proposed improvements to the latest interface based on objective interface evaluation 
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criteria and accomplished user profiling by incorporating a server-side implementation of 

user defined profiles.  Additional research [Hooten, 01] conducted performance analysis 

on bandwidth characterization issues.  The analysis tried to determine an optimal 

configuration of servers and images based on the current network configuration to reduce 

bandwidth.  However, this research effort was hindered by the limitations of the selected 

network-modeling tool.  This current research focuses on applying information retrieval 

techniques to the multiple heterogeneous imagery metadata databases to present users the 

most relevant images based on user defined search criteria.  More specifically, it defines a 

thesaurus development methodology to handle the complexities of heterogeneous 

databases and the application of two classic information retrieval models. 

1.1 Definition of Terms 

In order to provide a better understanding of this research effort, a definition of 

key terms as used in the context of this document are as follows: 

• Database:  Any relational database, e.g. Access, MySQL, SQL Server, etc 

• Document:  A record within a database consisting of entries of metadata, 
corresponding to an individual image 

• Model:  Any information retrieval model, e.g. Boolean, Vector, Extended 
Boolean, etc 

1.2 VDL Problem Statement 

The mission of the VDL is to facilitate cooperative research, development, and 

algorithm evaluation by providing communications, information services, and 

information retrieval for the entire ATR community.  To this end the Air Force Research 
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Laboratory Sensors Directorate has consolidated several heterogeneous imagery metadata 

databases into a single location as part of the VDL environment. The VDL environment, 

as seen in Figure 1, establishes a central library for metadata databases while allowing 

participating agencies to retain local control over their images. 

With the imagery repositories occupying over twenty terabytes, containing over 

750,000 images, and the metadata databases currently over three gigabytes in size and 

growing, a primary goal of AFRL/SN is to provide an effective means to locate and 

retrieve images based on queries of associated metadata.  Current query tool 

implementations, discussed later, may return thousands of documents with no mechanism 

for the user to distinguish between relevant documents (metadata records) and non-

relevant documents.  This makes the user’s job of selecting images to evaluate ATR 

algorithms very difficult.  This research discusses the theory and implementation behind 

a new set of VDL tools that normalize differing schemas of heterogeneous databases 

while allowing a user to submit a single query to multiple databases and retrieve ranked 

relevant documents using classic information retrieval techniques. 

Independent Remote 
Image & Metadata 

RepositoriesCentral Metadata Library

Metadata

Query 
Tool

Query 
Tool

Multi-Metadata-Database 
Query Tool

 

Figure 1.  VDL Metadata Query Environment 
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Previous implementations of query tools by AFRL/SN have met with limited 

success.  This is because of the inability to interface with more than one database at a 

time due to the differing naming conventions for column headings and data values among 

the databases.  In addition, no ranking mechanism to distinguish between the most 

relevant and least relevant documents was provided.  The first query tool, AQT 1.0, was 

hard-coded to work directly with the metadata database held at Wright-Patterson AFB, 

OH. Programming to a specific database makes it impossible to locate relevant 

documents from any other database within VDL without modifying the existing code.  

The next query tool, AQT 2.0 improved upon its predecessor by adapting itself to each 

database schema upon startup. This improvement made it possible to interface with 

different databases, however, it was still only capable of interfacing with one database at 

a time.  To search multiple databases, the user must start the tool and submit a query, 

direct the tool to another database and restart the tool to submit additional queries.  In 

both implementations, each tool submitted queries via SQL thereby eliminating any 

mechanisms of ranking documents by relevance to the user’s query.  In addition, the 

interfaces presented users with hundreds of various combinations of searchable image 

characteristics.  The user interfaces of AQT 1.0 and AQT 2.0 can be seen in Figure 2 and 

Figure 3, respectively.  
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Figure 2.  Query Tool 1.0 User Interface 

 

Figure 3.  Query Tool 2.0 User Interface 
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Both of these tools can be powerful if the user knows where to look in the 

interface and exactly what they are looking for.  However, due to the myriad of selections 

for the user to make, the interface complexities make the tool tedious to navigate and 

cumbersome to use.  These tools make each query a mundane exercise to narrow the 

search to images with a specific set of characteristics.  In addition, neither tool is robust 

enough to solve the inherent difficulty of VDL’s proposed design of querying multiple 

heterogeneous databases. 

1.3 VDL Research Focus 

The design, development, and evaluation of a new set of tools that categorize 

database specific terms, column headings and data values, by assigning synonyms and is 

capable of accepting a single user query, evaluating it across multiple heterogeneous 

databases, and returning the most relevant documents to the user is the primary focus of 

this research.  For this research, the developed tools responsibilities include: 

• Schema Integration Tool 

o Working in a heterogeneous database environment 

o Provide means to create a thesaurus through the creation of hierarchical 
categories and synonyms 

o Indexing documents according to information retrieval techniques 

• Query Tool 

o Presenting the user an easily understood interface for query submission 
and results viewing 

o Incorporate synonyms and categories through local query expansion 
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o Identifying and ranking relevant documents according to existing 
information retrieval models for presentation to the user 

1.4 Summary 

The Virtual Distributed Laboratory contains large databases of searchable 

imagery metadata for evaluating and testing automated target recognition algorithms.  

While the existing user interface can adapt itself to each individual database for relevant 

images, it is unable to search multiple heterogeneous databases at the same time with one 

user query.  This new research evaluates techniques for the retrieval of relevant images 

across multiple heterogeneous databases.  Specifically, the primary focus of this research 

is the application of a thesaurus-based approach for schema and data normalization for 

multiple heterogeneous databases and the evaluation of two classic information retrieval 

models, the Vector Model and Extended Boolean Model, as applied to the VDL 

environment.  

Chapter II of this paper provides an overview of the VDL concept, an overview of 

relational database theory and schema/data integration and normalization, an introduction 

to information retrieval concepts and the information retrieval models used in this 

research.  Chapter III explains the methodology used to develop the schema/data 

normalization tool and the multi-database query tool.  Chapter IV outlines the design and 

implementation of each of these tools.  Chapter V features the test cases and results, 

analysis of results, conclusions and suggestions for future research.      
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II. Literature Review 

2.1 Introduction 

The VDL concept encompasses several different technologies that are central to 

understanding the complexities of retrieving relevant images from multiple 

heterogeneous databases.  Since this research primarily involves the Virtual Distributed 

Laboratory, an overview of the VDL and its architecture is discussed in this chapter.  The 

role of metadata and how it can be used within the information retrieval domain is also 

analyzed.  Since the metadata resides in relational databases, relational database theory is 

discussed along with Structured Query Language or SQL.  This research places great 

emphasis on multiple co-located heterogeneous databases, therefore, the complexities and 

difficulties of working in that environment are presented.  In addition, since the primary 

focus of this research effort involves the application and evaluation of information 

retrieval models to retrieve and rank relevant documents, the role information retrieval 

concepts and models play is vitally important and is therefore covered in this literature 

review.  Three information retrieval models, the Boolean, Extended Boolean, and Vector 

Models are discussed in detail to provide a better understanding of the differing 

approaches to ranking relevant documents.  Since the word synonyms and concept 

hierarchy must be maintained in persistence storage, a disk-based B+ Tree data structure 

is explored to discover its advantages and disadvantages and is the final topic in this 

literature review. 
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2.2 VDL Overview 

The Virtual Distributed Laboratory (VDL) is a DoD wide Distributed 

Collaborative Development Environment (DCDE) established to facilitate cooperative 

research and development within the automatic target recognition community [VDL 

Marketing Slides].  It is sponsored by the Office of the Under Secretary of Defense for 

Acquisition and Technology (OSD ACQ) and was created as an outgrowth of the 

Defense Advanced Research Projects Agency’s (DARPA’s) Moving and Stationary 

Target Acquisition and Recognition (MSTAR) program as discussed in [DARPA 

Website].  The VDL architecture consists of five major components as seen in Figure 4 

[VDL White Paper]. 

  

Independent   
Algorithm   
Evaluators   

Simulation
Environments 

Algorithm   
Developers  

DoD High -Speed N etworks 

  VDL   
Central  
Library 

Computational   
Resources   (MSRC’s, DC’s)

Data
Resources
(NVL, SDMS) 

Resources  

 

Figure 4.  Virtual Distributed Laboratory Architecture 

AFRL/SN was funded to create the On-Line central library which has grown to 

consist of four major elements: 

• The web-based on-line library 

• Signature and Imagery Data locating tools 
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• Topic restricted search engines 

• Synchronous and asynchronous collaborative tools 

Allowing users to search the imagery metadata repositories based on defined 

criteria is the primary purpose of the signature and imagery data locating tools.  Locating 

candidate signature and imagery data is critical to the success of developing good ATR 

algorithms due to the large amounts of images required to train, test, and evaluate these 

algorithms. 

Signature files and imagery data are stored in large repositories independently 

maintained by various agencies throughout the DoD.  A description of each file and 

image, metadata, is stored separately from the data itself in comma separated value (.csv) 

files that are periodically updated to the VDL central library.  These .csv files are 

imported into a relational database program (i.e. Access, MySQL, SQL Server, etc).  For 

this research Microsoft’s Access relational database program was used.  The role of 

metadata in this research and relational DBMS models are discussed in the next two 

sections. 

2.3 Metadata 

Metadata is essentially data about the data.  [Dempsey, 1997] provides a more 

formal definition of metadata: 

“Metadata is data associated with objects which relieves their 

potential users of having to have full advance knowledge of their existence 

or characteristics” 
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For example, in a relational DBMS the schema identifies some of the metadata 

such as the name of the relations, the fields or attributes of each relation, the domain of 

each attribute, etc.  This information is stored in special tables called system tables.  

Figure 5 provides an example of a system table in a relational DBMS.  This table 

contains a record of each table present in the database.  These records store the number of 

columns of each table and each table’s primary key.  

In general, metadata can be broken down into five different categories depending 

on its functionality [Gilliland]: 

• Administrative:  Used in managing and administering information resources 

• Descriptive:  Used to describe or identify information resources 

• Preservation: Related to the preservation management of information 
resources 

• Technical:  Related to the level and type of use of information resources 

• Use:  Related to the level and type of use of information resources 

The administrative and descriptive definitions of metadata most closely identify 

the role of metadata as it is used in the VDL environment.  The metadata contained about 

each image not only contains a description of the image, but also characteristics as to how 

it was acquired.  Figure 6 displays a partial metadata record entry in the VDL 

environment taken from the Sensors Data Management System (SDMS) database at 

Wright-Patterson AFB, OH. 
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In this example, the metadata identifies a number of defining characteristics that 

describe this image: 

• Image size:  22896000  
• Date image was taken:  27 April 1998 
• Location image was taken:  Eglin AFB, FL 
• Primary weapon system in image:  T-72 Russian Tank 
• Specific serial number of weapon system:  A10 

Since the metadata is imported into a relational DBMS from its .csv file format, 

an overview of some basic principles behind the relational DBMS Model are discussed 

next. 

TABLE NAME NUMBER OF COLUMNS PRIMARY KEY
Eo_view 26 ID
Ir_view 26 ID

Sar_view 32 ID  

Figure 5.  Example of a SysTables System Table 

FILESIZE COLLECTION_DATE SITE OBJ_TYPE_ID OBJ_SERIAL_NBR
228960000 19980427 eglin_fl T72 A10  

Figure 6.  Partial VDL Metadata Record entry 

2.4 Relational Database Model 

2.4.1 Data Storage 

The Relational Database Model is the most widely used data model in the 

marketplace.  In the late 1960s at IBM Research, Dr. E.F. Codd established the 

foundation for relational database theory.  The Relational Model is based on the concept 

of a collection of tables in which all data is stored.  These tables represent data as a 
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collection of relations where columns are attributes and rows represent entities [Codd, 

1970].  Each column name in a table must be unique and all attributes of an entity, when 

taken together, represent a “key” that uniquely identifies that entity. 

A RDBMS is based on the mathematical notions of Relational Algebra and 

Relational Calculus.  Relational Algebra provides a collection of operations to manipulate 

queries through the use of set operations (union, intersection, etc.) and pure database 

operations (select, join, etc.).  A Relational Calculus is a formal query language that 

allows users to simply write a single declarative expression instead of having to write a 

sequence of relational algebra operations. 

A RDBMS can have varying degrees of performance based on its level of 

normalization.  Database normalization is the process of efficiently organizing data in a 

database.  The two goals of this process are to eliminate redundant data and ensure data 

dependencies make sense [Silberschatz, 02].  In essence, a higher order of normalization 

will reduce the amount of storage a database consumes and ensure the logical storage of 

data.  There are generally five levels of normalization accepted throughout the database 

community.  These are referred to as normal forms and are numbered from one (the 

lowest form of normalization, referred to as first normal form or 1NF) through five (fifth 

normal form or 5NF).  Below are guidelines to achieve a particular normal form for a 

given database. Since most applications do not need to be normalized beyond third 

normal form, the requirements for fourth normal form and fifth normal form are not 

shown. 

 13



 

 

 First Normal Form:  Eliminate duplicate columns from the same table as 
well as create separate tables for each group of related data and identify each 
row with a primary key. 

 Second Normal Form:  Remove subsets of data that apply to multiple rows 
of a table and place them in separate tables.  Also, create relationships 
between these new tables and their predecessors through the use of foreign 
keys. 

 Third Normal Form:  Remove columns that are independent of the primary 
key. 

2.4.2 Data Access and Manipulation 

Structured Query Language (SQL) is the most common query language used to 

manipulate data and retrieve records contained in the relational database model.  The 

SQL commonly referred to today was established by the American National Standards 

Institute (ANSI) and the (International Standards Organization (ISO) in 1987 and was an 

outgrowth of a series of relational model query languages developed as part of the 

System R project [Worsley, 01].  SQL is both a Data Definition Language (DDL) and a 

Data Manipulation Language (DML).  As a DDL, it allows an administrator or designer 

to define tables, create views, etc.  It also provides for integrity constraints and access 

rights specifications.  As a DML, it allows users to manipulate data and retrieve 

information through the use of relational algebra and relational calculus.  As a 

consequence, in the information retrieval domain, SQL is unable to determine a degree of 

relevance for a user’s query.  This is due to its reliance of set theory and Boolean 

operators. 
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2.5 Heterogeneous Databases  

The VDL On-Line Central Library of metadata is composed of multiple 

heterogeneous databases.  A group of databases are considered to be heterogeneous if one 

or more of the following differences exist between them:  schema differences, identical 

data with different name, different data with same name, and unit of measure differences.  

Each of these areas is discussed below. 

2.5.1 Schema Differences 

A database schema is essentially the logical design of the database.  Entries into 

the database must conform to the database’s schema.  Typically, when working with two 

or more databases, their schemas will not conform to one another.  For example, in one 

database an individuals weight may be entered as an integer, whereas in another, weight 

may be entered as a floating number.  This can cause problems trying to retrieve data 

from each of the databases with the same query expression.  Therefore, special 

procedures must be developed to retrieve data from these multiple sources. 

2.5.2 Identical Data With Different Name 

Having multiple databases that contain identical data with different names is 

another problem within heterogeneous databases.  For instance, one database may contain 

the column value called “IMAGE_DESCRIPTION,” that is used to describe the contents 

of an image.  Yet, in another database, describing an image is placed under a column 

named “IMAGE_SYNOPSIS.”  Multiple databases may also have instances where one 

column contains the desired information, while another database contains the information 
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spread across multiple columns.  In both instances, to retrieve data from these databases, 

some form of mapping between columns must be accomplished.  This problem is not 

limited to column headings, it can also appear in the data values themselves. 

2.5.3 Different Data With Same Name 

Different data with the same name occurs when data that has different meaning 

appears in multiple databases having the same reference name.  When dealing with 

information retrieval this can cause more non-relevant documents to be returned.  This is 

because there is no manner to distinguish which data is relevant based on the index term 

in the query.  However, this can be less of a problem, if the information retrieval system 

supports relevance feedback from the user as to which documents were relevant to the 

submitted query. 

2.5.4 Unit Of Measure Differences 

Unit of measure differences occur when databases determine their data values in 

different manners.  For instance, two databases could have two identical schemas where a 

column named “Weight” is expecting a float value.  However, Database A measures 

weight in pounds, where Database B measures weight in kilograms.  To effectively 

retrieve information from both databases, some conversion formulas must be adopted to 

map between various databases. 
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2.6 Information Retrieval 

Information retrieval (IR) is the study of information items in regards to their 

representation, storage, organization, and access [Salton, 83].  Most of the time IR deals 

with information in the textual domain, however, it may also involve spoken language, 

multimedia formats, etc.  The main focus of IR is to provide the end user the most 

relevant information based on some given guidelines.  There are two different methods of 

information retrieval:  ad hoc and filtering.  The ad hoc method is the most common form 

of information retrieval.  An information retrieval system is deemed to be ad hoc if new 

queries are being submitted to the system while the document collection remains 

relatively the same.  Filtering, on the hand, occurs when the queries remain relatively the 

same, while new documents enter the collection.  In both systems, the results can be 

presented to the users in a ranked format based on some relevance score.  However, this 

ranking mechanism is rarely used in a filtering system [Baeza-Yates, 1999].  Many 

different models and techniques can be used to return and rank relevant documents to the 

user.  Some of these models and techniques are discussed here. 

2.6.1 Information Retrieval Models 

There are over a dozen information retrieval models and variations, however, only 

three are discussed below.  Before this discussion, however, a brief discussion of the four 

characteristics of an information retrieval model is presented as found in [Baeza-Yates, 

1999]: 

• D is a set of documents in a given collection 
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• Q is the set of query terms from the user 

• F is the framework for modeling queries, documents, and their relationships 

• R(qi,dj) is the ranking function which associates how well a document relates 
to a given query 

Each IR model views the documents and/or queries in a different manner.  In the 

next few sections, a detailed discussion of the most common IR model, the Boolean 

Model, is presented, along with the two models that were implemented in this research, 

the Vector Model and the Extended Boolean Model. 

2.6.1.1 Boolean Model 

The Boolean Model is the simplest information retrieval model where queries are 

specified as Boolean expressions.  It uses set theory and Boolean algebra to determine 

whether a document is relevant or not.  Queries consist of index terms separated by the 

words and, or, and not.  The Boolean model looks at individual index terms and assigns a 

term weight of (0, 1) based on whether it appears in a document.  The ranking of a 

document is accomplished by calculating the similarity of each document to the query 

based on each index term weight.  A document is deemed relevant only if sim(dj, q) = 1.   

However, with this easy implementation and understanding comes some major 

drawbacks.  First, the documents are either relevant or non-relevant, with no partial 

matches, making the comparison of relevance between documents very difficult.  Next, is 

the difficulty to express queries as Boolean expressions because most users assume the 

everyday English semantics of AND and OR rather than their logical equivalence.  In the 
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end, the Boolean approach of exact matching can either return too few or too many 

documents to the user. 

2.6.1.2 Vector Model 

The Vector model is a framework in which a degree of similarity of a document 

to a query can be calculated.  The weighting of index terms is no longer binary, which 

allows partial match consideration.  The degree of similarity acts as the relevance score 

of a document – the higher, the better. 

The degree of similarity for a document is calculated by first calculating the 

normalized frequency of a term in a given document: 

jii
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freq
freq

jfi
,

,

max
, =  

Where, freqi,j = raw frequency of term ki in docj and maxi freqi,j is the maximum 

freq. of all terms in docj  

Next, calculate the inverse document frequency, idf, of term ki: 

i
i n

Nidf log=  

Where, N = total number of docs in the collection and ni = number of docs index 

term ki appears 

Then multiply the two together to calculate the term-weight for each ki in docj 

ijiji idffw ∗= ,,  
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Further, the cosine of the angle between the query and each document is 

calculated by the following: 
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Where t = vector dimension 

2.6.1.3 Extended Boolean Model 

The Extended Boolean model is a compromise between the Boolean and Vector 

models.  In the Extended Boolean model, query term weights are assumed to be between 

0 and 1, possibly by using the following formula: 

ii
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Given two index terms the sim(qor, d) and the sim(qand, d) can be calculated. 
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Where x = wx,j and y = wy,j  

Obviously, many queries have more than two key terms, therefore a 

generalization of the above formulas as been adopted called the p-norm model where 1 ≤ 
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p ≤ ∞.  The value of p must be defined at query time.  With this in mind the query-

document similarities can now be calculated as follows: 
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It can be shown that when p = 1, the above formulas are similar to the Vector 

model and when p = ∞, they are similar to the Boolean model.  Therefore, by varying p 

between 1 and ∞, the behavior of the Extended Boolean model can be more like the 

Vector or Boolean model respectively. 

2.6.2 Information Retrieval Techniques 

2.6.2.1 Inverted File 

In the past many information retrieval systems used a direct file organization that 

stored individual files in some predetermined order.  When a search request was 

submitted, it involved searching the full text of each document in the collection.  This 

approach can be an excellent choice when performing batch processing of queries since 

only one entire scan of the collection would be required.  However, there is a major 

drawback to the direct file approach.  In most information retrieval systems, queries are 

submitted one at a time, so an entire scan of the documents for each query can be quite 

slow. 
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When queries are submitted one at a time, the use of some indexing structure to 

represent the document collection is more appropriate.  There are many different methods 

to create the index.  Two of the more well-known methods are inverted files and 

signature files.  However, [Zobel, 98] states that inverted files are superior to signature 

files because of less space requirements, providing faster query evaluation, and providing 

greater functionality.  Inverted files are a file organization where the keywords are 

indexed with a reference to each document the keyword appears in, as seen in Figure 7. 

As seen in Figure 7, the word “inverted” appears in three documents within the 

collection (Documents: 1, 3, and 6).  The document key is not the only information that 

can be stored with each index term.  As we will see later, storing the number of times the 

word appears in the document will also be useful.  The benefit of the inverted file is that 

it is only necessary to look at documents that include the individual index terms that are 

contained in the query, resulting in a quicker query response time.  However, in the 

worst-case scenario, indexing every word in the collection can result in an index as large 

as the collection itself.  Two approaches are now discussed that can help reduce the index 

size. 
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Figure 7.  Conceptual View of an Inverted File 
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2.6.2.2 Stop Words 

Stop words are words that appear in many of the documents within the collection.  

Words like ‘the’, ‘and’, ‘a’ etc. will likely appear in every document.  Thus, the ability of 

these words to discriminate between documents is impossible.  Therefore, removal of 

these words from the index can reduce the index size considerably.  In addition to articles 

and prepositions, stop words can be generated from the index terms within the index 

itself.  So cutoff point can be established (i.e. a word appears in more than two-thirds of 

the documents) to ignore the word, should it be submitted in a query.  However, removal 

from the index can create problems in the future.  For instance, more documents are 

added to the collection, not containing the current generated stop words.  If enough 

documents are added, then the stop words become more relevant and are no longer stop 

words and should be included in the query. 

2.6.2.3 Stemming 

Stemming is another approach to reduce the size of the index.  It is the process of 

stripping a word of prefixes and suffixes to get to its root.  Only the root is stored in the 

index along with the document keys of the all the variations of the words in the 

collection.  For example, the words, psychiatrist, psychiatry, psychiatric, psychology, and 

many other terms reduce to form PSYCH*.  In addition to reducing the index size, 

stemming is also used to improve recall by generalizing over word variants [Riloff, 95].  

However, experiments in the use of stemming by [Harman, 91] and [Krovetz, 93] have 

produced mixed results.  There is a number of ways to strip the prefixes and suffixes 
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from words.  One approach is to remove suffixes is to remove only pre-selected ones 

determined before indexing; the other is to remove a fixed number of characters from the 

end of the word.  The goal is to remove suffixes to form reasonable recognizable terms.  

For example, “ing” would be removed from the word “indexing,” but not from the word 

“king.”  Removing prefixes can be reduced to suffix truncation, if the words are indexed 

in the correct manner.  One way to accomplish this is to index the words backwards.  For 

example, the word “antisymmetry” would be entered as “yrtemmysitna.”  However, to 

index words that contain both prefixes and suffixes, the words must be indexed forwards 

and backwards [Salton, 89]. 

2.6.2.4 Thesauri 

One of the main issues in information retrieval is the language variability between 

authors and users [Salton, 71].  This problem occurs when there is a word-mismatch 

between the words contained in the document collection and the user’s query.  This 

problem tends to be less pronounced as the query gets longer.  However, in most 

applications queries tend to be only a few words.  For example, [Croft, 95] states that 

queries on the World-Wide Web tend to be only two words on average.  The most 

common approach to alleviate this problem is through the use of a thesaurus.  A thesaurus 

or “synonym dictionary” can replace index terms with words of the same meaning.  

Many different methods of thesaurus creation have been tried over the last three decades 

and can be grouped into three general categories [Mandala, 99].  Thesauri are either 

generated by hand or automatically through a co-occurrence based method or a head-
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modifier method.  Thesaurus use helps alleviate the word-mismatch by expanding the 

user’s query by adding words that may mean the same to the query.  However, the 

increase in retrieval performance can depend on the thesaurus and IR system pairing or 

the thesaurus alone.  Constructing a thesaurus in a given subject area can be 

accomplished automatically, but is best accomplished manually through a group of 

experts [Salton, 89].  In addition to storing synonyms, a hierarchical thesaurus on 

concepts can be constructed to broaden or narrow a search request.  An example of a 

hierarchical thesaurus can be seen in Figure 8 below. 

[Salton, 71] states that broadening through parents or narrowing through children, 

can improve retrieval performance for certain recall levels, however, a standard thesaurus 

alone produces better results.  This is because a query expansion using a hierarchy can  

crystallize the meaning of a poorly stated query and the change in the direction caused by 

incorporating a hierarchy can be too violent. 

Aircraft

BombersFighters PropellerJets

Military Aircraft Commercial Aircraft

F-15 F-15 B-52 B-2

Aircraft

BombersFighters PropellerJets

Military Aircraft Commercial Aircraft

F-15 F-15 B-52 B-2  

Figure 8.  A Partial Hierarchy of Aircraft Words and Categories 
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2.7 B-Trees 

The index of the document collection must be stored in persistent memory for use 

at later times.  B-Trees are balanced search tree data structures that minimize the time of 

disk I/O operations [Cormen, 90].  The logical view of a B-Tree can be seen below in 

Figure 9.  This figure shows that reaching any letter in the alphabet will never take longer 

than two reads.  Whereas, in a strict binary tree reaching some letters could take as many 

as five reads, thus causing the program using the tree to wait on I/O. 

The size of the inverted file can grow very large, however, as more documents are 

added to the collection the number of index terms in the file grows slowly.  This is due to 

Heap’s Law where it states that a vocabulary of size n words is of size V = Knβ = O(nβ).  

Normally, K is between ten and one hundred and β is between zero and one.  Values of K 

and β depend on the size of the text, however, an experiment on the TREC-2 collections 

demonstrated that the vocabulary grows in proportion to the text size, close to its square 

root.  

Y•• Z •G•• H•

U•• X•
S •• T •J •• K•

L •• O•
P •• Q•M•• N• V•• W•

I •• R •

A•• B • D•• E •

C •• F •
Y•• Z •Y•• Z •G•• H•G•• H•

U•• X•U•• X•
S •• T •S •• T •J •• K•J •• K•

L •• O•L •• O•
P •• Q•P •• Q•M•• N•M•• N• V•• W•V•• W•

I •• R •I •• R •

A•• B •A•• B • D•• E •D•• E •

C •• F •C •• F •

 

Figure 9.  B-Tree Logical View 

2.8 Summary 

This chapter presented a review of the various technologies that form the 

cornerstone of this research.  First the overall structure of the VDL concept was 
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examined, followed by definition of metadata and its role in this research.  Next, an 

introduction to relational database theory and a brief synopsis of the capabilities and 

drawbacks of SQL is presented.   A brief discussion follows of heterogeneous databases 

and the hurdles to overcome to retrieve information from multiple heterogeneous 

databases.  An introduction to information retrieval, its few retrieval models, and some 

simple techniques are discussed next.  This chapter concludes with an overview of the 

composite pattern and a review of B+ Trees.  In the next chapter, the methodology used 

to incorporate these technologies to retrieve relevant images from the VDL On-Line 

Library is presented. 
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III. Methodology 

3.1 Introduction 

This chapter defines the methodology used to develop an image retrieval system 

capable of providing users an effective means to query and retrieve images in order of 

relevance from metadata contained with multiple heterogeneous relational databases.   

Currently, there is no mechanism within the VDL environment to map between 

the heterogeneous databases.  This includes the database schema and data values within 

the database. The approach taken is to incorporate the use of a hierarchical thesaurus, 

where a global schema and data values can be developed to perform query expansion to 

include words that appear across more documents within the collection.  This research 

develops two tools, that when working together can develop the hierarchical thesaurus 

and use the thesaurus to retrieve relevant documents from the databases. 

This chapter begins with an overview of the tools used to perform the analysis, 

design, and implementation of the Schema Integration Tool and the Query Tool.  This is 

followed with a discussion of the general approach used in the Schema Integration Tool.  

Here, the concepts of document representation, database normalization, database parsing 

and indexing are discussed.  Following this is a discussion of the methodology used to 

develop the Query Tool with regards to filtering and relevant document retrieval.  The 

chapter concludes with the discussion of the design of the Schema Integration Tool 

followed by a similar discussion of the design of the Query Tool. 
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3.2 Development Tools 

The development of the Schema Integration Tool and the Query Tool utilizes a 

call and return program architecture using the Java programming language.  This section 

describes the capabilities and advantages of each. 

3.2.1 Call and Return Architecture 

The Call and Return programming architecture is a type of structural 

programming model that provides the programmer a structure that is easy to modify and 

scale [Pressman, 01].  With this architecture there is a “main” program method from 

which additional methods may be called.  These additional methods may in turn call 

other methods to accomplish their goal.  Eventually, the program control is returned to 

this main function so that additional method calls may be made. 

3.2.2 Programming Language 

The Java programming language is used as the implementation language for the 

Query and Retrieval Tool and the Schema Integration Tool.  Java was developed by Sun 

Microsystems to be an easy to understand programming language that provides many 

benefits [Sun Microsystems]: 

 Platform Independence:  Any Java program can be compiled and executed 
on any Java Virtual Machine (JVM) regardless of the underlying hardware or 
operating system. 

 Exception Handling:  Java supports throwing and catching exceptions at the 
hardware and program level. 
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 JDBC Interfacing:  Java provides the JDBC database interface to make 
simple database tasks, such as establishing a connection, querying, and 
retrieving results very easy. 

 JFC/Swing:  Java provides an easy manner in which to build Graphical User 
Interfaces (GUI), through its Java Foundation Classes (JFC).  Within the JFC, 
developers can incorporate everything from buttons to split panes to tables 
into their GUIs.  

With these features, Java provides a powerful set of programming tools to 

facilitate the implementation of GUIs to access databases through the object-oriented 

programming paradigm.  This is all accomplished while having the capability to be 

compiled and executed on any system containing a JVM. 

At the time of this research, Sun Microsystems’ most recent version of the Java 

language is the Java Development Kit 1.3 (JDK 1.3) and is the one utilized in this 

research for the implementation of the Query and Retrieval Tool and the Hierarchical 

Thesaurus Creation and Indexing Tool.   

To facilitate the development process, JBuilder was the environment used to 

implement the design of tools in this research.  JBuilder is a Java development 

environment produced by the Borland Software Corporation that provides a point and 

click GUI building environment and excellent code generation facilities. 

3.3 Hierarchical Thesaurus and Indexing Tool 

3.3.1 General Approach 

This section discusses the general approach used to develop the Schema 

Integration Tool used in this research.  First the approach used to represent documents is 
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presented, followed by the approach used to normalize data values and column headings.  

Finally, this section concludes with a discussion of the Schema Integration Tool 

functions. 

3.3.2 Document Representation 

To retrieve relevant images within a relational database using text-based 

information retrieval techniques, the Schema Integration Tool uses a unique document 

definition strategy.  Since each record in a relational database is assumed to be unique, 

each record is treated as an individual document.  Also, the entries of the record describe 

the attributes of a single image, much like words of a textual document describe the 

document itself. 

3.3.3 Hierarchical Thesaurus 

Differing schemas and data values are the major hurdles to overcome to retrieve 

items from heterogeneous databases.  The Schema Integration Tool uses a hierarchical 

thesaurus to alleviate the problems caused by this type of environment.  Using a 

hierarchical thesaurus not only allows users to search for documents without knowing the 

exact vocabulary used, but also allows them to search for higher-level concepts that may 

not appear textually in a document. 

To provide the VDL administrator a basis to create higher-level concepts the idea 

of a category is introduced. A category is an object that can contain words, and other 

categories.  It has a one-to-many relationship with words and a many-to-many 

relationship with other categories.  This means that each category has the potential to 
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contain many words, however, words may only be assigned to one category.  These 

relationships can be seen in Figure 10.  The many-to-many relationship means that a 

category may be contained within other multiple categories, thus, creating a hierarchy of 

more general concepts.  Figure 10 shows that F_16 and F16 are individual words that 

have the same meaning.  However, a category named F-16 has been created to group 

these words together as synonyms.  At this level, the category follows the same principles 

as a thesaurus.  If a user entered a word belonging to a category, the query would be 

expanded to include the other words that were maintained in the same category.  Without 

this approach, relevant documents would go unnoticed due to the differences in 

vocabulary between the query and the words in the actual document.  However, the 

hierarchical thesaurus takes the concept of a standard thesaurus one step further. Also 

seen in Figure 10, the F-16 category has been assigned to multiple higher-level 

categories.  These categories serve as higher-level concepts of the individual words.  This 

allows the user to define a more general concept during query time, even if the concept 

words are not found in the document itself. 

F_16 F16

F-16

US FightersIsraeli Fighters

WordsCategories

F_16 F16

F-16

US FightersIsraeli Fighters

WordsCategories

 

Figure 10.  Hierarchical Thesaurus Example 
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By selecting concepts higher in hierarchy of the thesaurus, users may query for more 

general concepts such as “tanks” without the word actually appearing in the document.  

As the user moves down the hierarchy, their queries become more and more specific until 

they reach a specific word. 

As discussed in Chapter 2, stemming is another method to retrieve possibly more 

relevant documents and can be accomplished using the hierarchical thesaurus.  The 

thesaurus may contain a category based on the root of a word, such as “like.”  Variations 

of this word may include “unlike” and “likely.”  Words with prefixes and suffixes may be 

assigned as synonyms to one another under the root word category.  Users may use these 

methods to search documents without regard to the verb tense (past, present, future) the 

document was written in.  However, this stemming approach does not save any index 

space, unlike normal stemming where only the root word is stored and stemming 

algorithms are used to recreate words based on the root. 

To be able to assign words as synonyms through the use of categories, each 

document must be parsed to determine what words are contained within it.  The approach 

behind parsing a document used in this research is discussed in the next section. 

3.3.4 Database Parsing 

As discussed previously, a document is considered to be a single record in a 

relational database consisting of all columns.  Parsing a database consist of finding all 

data values, excluding numerical values, and presenting them to the VDL administrator 

for possible inclusion to a category.   
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However, not all words may be included.  Some stop words (i.e. “a”, “and”, “the”, 

etc.) may not be included at the discretion of the VDL administrator.  Note however, that 

the use of the stereotypical stop words are not recommended due to the type of object the 

documents in this research are describing.  In imagery descriptions, the use of 

prepositions as stop words can significantly reduce the level of recall for a system [Riloff, 

95].  This is due to their precise descriptive value.  For example, if a user entered a query 

to see images with all “tanks on a bridge.”  If the standard practice of removing 

prepositions is followed, then the query terms are reduced to “tank” and “bridge.” This 

approach treats the images of “tanks on a bridge” and “tanks next to a bridge” as 

equivalent. Obviously, this is not what the user intended.  If the preposition “of” were 

indexed then the documents containing the words “tank”, “bridge” and “of” would be 

scored higher since “of” would add extra weight to the documents than those without it.  

For this reason, prepositions are not considered stop words and should be indexed.  Word 

weights are an integral part of any textual based information retrieval system.  The 

approach used to set individual word weights used in this research is discussed in the next 

section. 

3.3.5 Indexing 

The idea behind indexing is to track which words appear in which documents 

along with their frequency within individual documents and throughout the collection.  

The indexing approach used in this research is accomplished through two-steps.  First, 

each document is indexed similar to an inverted file.  The next step is to index the column 
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headings as to which words appear in their column.  These two approaches are discussed 

in the following two sections. 

3.3.5.1 Document Indexing 

Document indexing follows the same general principles as parsing the database to 

find individual words, with two exceptions.  First, when the initial set of words are 

presented to the VDL administrator; multiple instances of the same words are ignored.  

However, when a document is indexed, as words appear more often throughout the 

collection, their occurrence list is updated as to which documents they are contained in 

and their frequency of occurrence.  This information is used to set the idf of individual 

words that are used in the two information retrieval models, Vector and Extended 

Boolean, as discussed in Chapter 2.  However, using a thesaurus creates problems when 

calculating the idf of words and the maximum word frequency in a document.  Words 

having the same meaning, through the assignment to the same category should have the 

same idf factor since they are treated as being identical.  Recall that: 

i
i n

Nidf log=  

Where, N = total number of docs in the collection and ni = number of docs index term ki 

appears. 

Setting the idf of words within the same category requires an additional pass 

through the list of words to determine which words are assigned to categories.  If a word 
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is assigned to a category, then the idf of the word is the summation of the number of 

documents it and its synonyms appear in. 

3.3.5.2 Column Headings 

The idea of required criteria that a document must contain before it can be 

deemed even partially relevant is also important.  This is similar to the idea of SQL and 

the Boolean model in information retrieval.  With this approach only documents that 

meet all criteria are scored for relevance.  This is accomplished through indexing the 

individual columns of a database.  When a word or number is found by the parser then 

the occurrence list of the column to which it is assigned is updated with that value and the 

documents in which it appears.  In the Query Tool, the user may select criteria that has 

been indexed in this manner as a way to filter unwanted documents that do not meet the 

criteria. 

3.4 Query Tool 

3.4.1 General Approach 

This section discusses the general approach used to develop Query Tool used in 

this research.  The approach used to retrieve relevant documents is presented first, 

followed by the approach used to rank relevant documents. 

3.4.2 Relevant Document Retrieval 

Relevant document retrieval is the process of retrieving documents the user may 

be interested in.  The manner in which this research determines relevant documents is 
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accomplished in two steps.  With the first step, the user may reduce the number of 

documents retrieved by requiring that certain criteria be met in the description of the 

image, regardless of its location within the database.  This approach is simply an 

implementation of filtering similar to the Boolean information retrieval model.  In the 

Boolean model, only documents meeting all criteria are returned as relevant documents.  

However, as with Boolean model, no ranking of the documents is provided, and therefore 

all returned documents from this filtering are equally relevant.  If a user enters only 

filtering criteria and no query terms then the user has essentially issued a Boolean query 

with the AND operator between each criteria, and will cause the above situation to occur.  

As one would expect, the collection of relevant documents becomes smaller as more 

mandatory criteria is placed on the documents that must be met. 

If the user has entered a series of keywords as a query, then only the collection of 

documents meeting the criteria are ranked by relevance.  If no query is provided then all 

documents are considered relevant that meet the filtering criteria are relevant. 

If a user has entered a query, then the next step involves the parsing the user’s 

query to determine keywords by which to evaluate the documents.  At this point, the 

query is expanded through the use of the hierarchical thesaurus.  If any of the query 

words are members of categories, then the other words within the category are included 

in the query.  Also, if a category is entered as a query word, then all words below it are 

also included, regardless of their location in the lower sub-tree.  Each of the remainder of 

the relevant documents must contain at least one of the keywords in the query to remain.  

If no keyword in the query is found in the document, then it is removed from the relevant 
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document set.  This process of elimination of documents that have no relevance to either 

the user’s criteria or the keywords in the query reduces the time to return the relevant 

documents to the user. 

Once the process of determining possible relevant documents is completed the 

documents are individually ranked by the methods presented in the next section. 

3.4.3 Relevant Document Ranking 

Once the set of relevant documents has been determined and a query has been 

issued, the documents are ranked according to one of the two algorithms discussed in 

Chapter 2.  Both the Vector and Extended Boolean model provide a natural ranking of the 

documents according to their relevance to the query and document criteria. 

3.5 Design Architecture 

In the following two sections the designs of Schema Integration Tool and the 

Query Tool are presented.  Figure 11 provides an overview of how these tools are used 

together to accomplish the goal of retrieving relevant documents.  As the figure shows,  

 

Index: 
Inverted 

File 

Create/Update Read Index: 
Inverted 

File 

Create/Update Read 

Schema Integration Tool Query Tool
 

Figure 11.  Pipeline Architecture Between the Two Tools 
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The Schema Integration Tool produces and updates the inverted file based on the words 

found in the database documents and the assignment of words to categories and the 

hierarchy of categories.  The Query Tool uses the inverted file to provide the user a way 

to retrieve documents ranked by their relevance to the submitted criteria and query.  As 

one would expect, the performance of the Query Tool can only be as good as the inverted 

file it is based on.  In the following sections, the designs of these two tools are covered in 

detail. 

3.5.1 Schema Integration Tool 

The architecture of the Schema Integration Tool is written using a functional 

paradigm comprised of thirty-two method calls as seen in Figure 12.  The call structure 

can be seen in Figure 13.  The major functional pieces that are cutout are explained in the 

following sections. 

1 jbInit() 17 RemoveColumnCategory()
2 QuitProgram() 18 DisplayAddSuperCategoryPopup()
3 ShowConfirm() 19 DisplayAddSuperColumnCategoryPopup()
4 InitialConnection() 20 DisplayRemoveSuperCategoryPopup()
5 ChangeConnection() 21 DisplayRemoveSuperColumnCategoryPopup()
6 ReadCategoryInformation() 22 AddSuperCategory()
7 ReadColumnCategoryInformation() 23 AddSuperColumnCategory()
8 ResetObjectsToAssignList() 24 RecurseDown()
9 ResetColumnObjectsToAssignList() 25 RemoveSuperCategory()

10 ResetSubCategoriesList() 26 RemoveSuperColumnCategory()
11 ResetSubColumnCategoriesList() 27 GetObjectsToAssign()
12 ResetSuperCategoriesList() 28 IndexDatabase()
13 ResetSuperColumnCategoriesList() 29 SetSynonyms()
14 AddCategory() 30 SetWordIDF()
15 AddColumnCategory() 31 SetCategoryInfo()
16 RemoveCategory() 32 RecurseFunction()  

Figure 12.  Available Method Calls of the Schema Integration Tool 
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Figure 13.  Schema Integration Tool Method Call Chart 

3.5.1.1 Parsing 

Once a connection to a database is established, the GetObjectsToAssign() method 

is responsible for parsing the current database.  The database parsing consists of two 

main functions.  First the GetObjectsToAssign() method retrieves the individual column 

headings of the relational database.  It is also responsible for extracting each unique word 

(i.e. all non-numeric and non-null values) and presenting them to the user for possible 

assignment to categories.  Once the column headings and the distinct words have been 

determined, then the GetObjectsToAssign() method resets the graphical user interface. 

3.5.1.2 Hierarchy Creation 

The hierarchical thesaurus consists of two distinct hierarchies, one for column 

headings and one for data values within a database.  The manner in which these two 

distinct hierarchies are created is accomplished in the same manner.  Assigning a 

category to a word is relatively easy:  if a word has not been assigned a category, then 

update the word with the category it is assigned to and add the word to the list of children 
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of the category.  If a word has been assigned to a category previously, then reassign it to 

the new category, updating the word, the new category, and the old category about the 

change.  Additionally, adding and removing categories are relatively easy.  When 

removing a category, only its children and parents within the hierarchy must be updated 

to reflect the removal of the category.  However, it is the assignment of one category as a 

parent to another category that can be somewhat tricky.  When adding a parent category 

certain rules must apply.  The most important is that the new addition may not create a 

cycle in the graph, meaning the category to add as a parent may not already be a 

descendent of the child category.  In Figure 14, it can be seen that the category “Israeli” 

could not be assigned as a parent to the “Fighters” category because this would create a 

cyclical graph.  However, also seen in Figure 14, a category may also have a sibling as its 

parent in that the category F-16 may be a child under “Israeli”, but is may also be a child 

directly under the “Fighters” category. 

 Fighters Fighters 

Israeli 

F-16 

 

Figure 14.  Preventing Category Cyclical Graph Example 

3.5.1.3 Indexing 

The IndexDatabase() method is responsible for re-parsing the database and setting 

word weights based on the occurrence in the document collection.  This method’s 

primary responsibility is to parse and update each word’s and each column’s occurrence 
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list as to which document it appears in and frequency of occurrence.  It uses three 

additional utility functions to inform each word of its synonyms, its idf weight, and 

updating the categories with all relevant words and documents that are located as children 

below it in the hierarchy.  Once the database has been parsed, then the words are iterated 

over to update their synonym lists by looking at their assigned category and the additional 

words assigned to the same category.  Computing the idf, as discussed earlier, is the 

process of determining the number of distinct documents a word or one of its synonyms 

is located within.  Since each category may have both categories and words as children, 

determining the relevant words and documents in its sub-tree requires the use of a 

recursive function to do a depth-first search to retrieve this information.  This approach 

requires the storage of repetitive data, however, it is used to increase the speed of the 

query tool by not having to perform this operation at query time. 

It has been noted that not all columns need to be searched.  Therefore, in an effort 

to increase indexing speed, only columns selected by the VDL administrator are indexed.  

This approach not only increases speed, it also reduces the size of the disk-based B-Tree, 

therefore saving hard disk space.  In addition, a reduction in the B-Tree size decreases 

lookups to retrieve individual words, thus increasing the speed of the Query Tool.  A 

discussion of the architecture of the Query Tool is provided in the next section. 

3.5.2 Query Tool 

The architecture of the Query Tool is also written using a functional paradigm 

comprised of thirteen method calls as seen in Figure 15.  The call structure for the Query 
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Tool can be seen in Figure 15.  The BasicSearch() method is the primary method within 

the Query Tool and its responsibilities and additional method calls are discussed in the 

following sections. 

1 main() 8 VectorModel()
2 DisplayCategories() 9 ExtendedBooleanModel()
3 DisplayDocInfo() 10 RecurseEquals()
4 AddFilter() 11 RecurseBoth()
5 RemoveFilter() 12 RecurseGreater()
6 SetBasicQueryInterface() 13 RecurseLesser()
7 BasicSearch()  

Figure 15.  Available Method Calls of the Query Tool 
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Figure 16.  Query Tool Method Call Chart 

3.5.2.1 Filtering 

The first half of the BasicSearch() method involves filtering of documents that do 

not meet the specified criteria by the user.  No individual column headings are displayed 

to the user; only “Column Categories” are displayed.  Therefore, if a column heading is 

to be searchable, then it must be assigned to a higher-level category.  The BasicSearch() 

is responsible for parsing the user’s criteria into smaller pieces of information.  This 

information includes which Column Category the user has requested, and the specified 

ranges to include.  The filtering mechanism provides the user the ability to search for a 
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specific range of inclusive numbers or an individual word that must be present within the 

column heading.  However, multiple word searching within the same column heading is 

not currently implemented. 

The filtering approach was selected over a pure information retrieval approach.  

In a pure information retrieval approach, an algorithm would be developed to determine a 

weighting factor for the criteria based on the distance from the user’s original request, 

thus treating the criteria similar to a query term.  This primarily deals with the instance of 

where the user has selected criteria that must be equivalent to some number.  This 

approach could provide smaller weights as the values of the characteristics of the 

documents move farther from the user defined number.  However, it is generally 

understood that when a user specifies that a document must meet some criteria, then any 

document that does not meet any one of the specified criteria is excluded. 

3.5.2.2 Relevant Document Ranking 

Once the document collection has been filtered and only documents that meet the 

strict criteria from the user remain, the process of ranking these documents according to 

their relevance to the query can begin.  This ranking is accomplished through the 

selection of two classic information retrieval models (Vector and Extended Boolean).  

These models provide a natural ordering of the documents in ascending order according 

to their relevance.  The implementation of these information retrieval models is discussed 

in the next chapter. 
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3.6 Summary 

This chapter begins with an overview of the design architecture used in the 

implementation of the Schema Integration Tool and the Query Tool and discusses the 

advantages of using the Java programming language in this research.  The Schema 

Integration Tool has three general functional requirements of document representation, 

and parsing and indexing the individual databases.  Within the Schema Integration Tool 

the VDL administrator may also develop high-level concepts of words that may be 

contained in the documents and assign synonyms to standardize the data values found in 

the database.  This will allow the users to search for concepts and words that may not be 

contained directly in the text of the documents.  

The functional requirements of the Query Tool consist of permitting the user to 

filter documents according to some specified criteria before beginning the ranking 

process based on query terms.  In addition, the Query Tool is responsible for retrieving 

the documents that contain at least one query term from the subset of documents meeting 

all the user’s criteria.  This subset of documents is ranked via the Vector or Extended 

Boolean model according to relevance.  The design of the Schema Integration Tool and 

Query Tool are based on a Call and Return Architecture permitting easy modifications to 

the program as needed.  In Chapter 4 both applications are implemented, tested, and the 

results interpreted. 
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IV. Implementation and Results 

4.1 Introduction 

This chapter discusses the functionality of the Hierarchical Thesaurus & Indexing 

Tool and the Query Tool as implemented in this research.  It begins with a discussion of 

some important design issues that were encountered during the design and 

implementation stages.  Next, the two major functional areas that make up the 

Hierarchical Thesaurus and Indexing Tool are presented.  These two areas provide all the 

functionality to provide hierarchy creation and document indexing.  This is followed by a 

discussion of the implementation of the Query Tool.  Finally, a brief discussion of the 

evaluation criteria is presented followed by the test cases and results. 

4.2 Design Issues 

During implementation, two key issues came to light and a brief discussion of 

each is presented here.  These areas include the speed and the amount of memory used in 

creating and maintaining the indexes and hierarchies, in addition to relevant document 

retrieval. 

4.2.1 Memory 

The amount of space taken up by the document index and categories hierarchy is 

of great concern when dealing with the large volume of documents in the VDL 

environment.  When dealing with a small number of documents, the index and hierarchy 

can be held in main memory.  This approach would greatly increase the speed by which 
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the hierarchies can be maintained and relevant documents could be retrieved.  However, 

as the number of documents in the collection continues to grow, it becomes increasingly 

difficult to maintain these structures in memory and therefore, this approach was deemed 

not feasible and was not pursued.  Since the index cannot be held in main memory, a 

persistent storage mechanism must be implemented to maintain a large index and 

hierarchy while allowing fast access to data when needed.  In addition to eliminating the 

requirement to rebuild the index each time the tool is executed, persistent storage 

provides a medium by which the document collection’s growth is not bounded by the 

limit of main memory, but only by the amount of available disk space.  Therefore, the B-

Tree data structure is the data structure of choice in this research to maintain the long-

term storage of the indexes and hierarchies.  The B-Tree that was used for this research 

stores nodes on individual pages on disk.  If a node is larger than the page size, then it is 

stored across multiple pages. 

4.2.2 Speed 

Speed was one of the most critical factors when developing the tools in this 

research, specifically for the Query Tool.  In the Hierarchical Thesaurus and Indexing 

Tool, the speed at which documents are indexed is not crucial to the success of this 

research, but should be considered.  On the other hand, the speed at which the Query 

Tool can return relevant documents should not grow proportionally to the growth of an 

increased document collection size.  Results of whether this was accomplished will be 

seen later in the chapter. 
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4.3 Hierarchical Thesaurus and Indexing Tool 

The design of the Hierarchical Thesaurus and Indexing tool was developed with 

three major functions in mind.  These functions and the manner in which there are 

implemented in this research are discussed in detail in the following sections. 

4.3.1 Parsing Documents 

Before a user can create and assign synonyms to individual words in a document 

through categories, each document must be parsed to determine the unique set of words 

that make up the database in the collection.  For this, Java’s JDBC is used to connect to 

the desired database and records are read one at a time and added to a data structure for 

presentation to the user.  If column values are found to contain multiple words or phrases, 

these are broken down to their atomic words via a string tokenizer and also inserted into 

the data structure.  Only words are considered, if a data value is determined to be a 

number then it is ignored.  In addition to parsing documents, the parsing function is also 

responsible for determining the values of the column headings and also presenting them 

to the user.  Once the parser has determined the set of unique words and the database 

column headings, each value is sent to their respective B-Trees on disk.  There are a total 

of five B-Trees, one for the regular words, one for the column headings, one for word 

categories, one for column categories, and also one for a unique database and table 

combination identifier to be used during the indexing process.  The end result of the 

parsing function is two lists of words that may now be assigned to different categories. 
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4.3.2 Hierarchy Thesaurus Generation 

Categories may either be created before or after a database has been parsed.  

However, assignment of words to categories may only be accomplished after the database 

has been parsed.  If a word has been assigned to a category from an earlier database, if a 

new database is loaded and parsed and the word appears again, there is no need to 

reassign the word to the same category.  Although words may only be assigned to one 

category, categories may be assigned to multiple categories.  Once the VDL administrator 

has determined the thesaurus is complete, the indexing process may begin.  If a database 

has been indexed prior to any changes made to the thesaurus hierarchy, there is no need 

to index the database again.  The indexing of the current database will handle any 

additional category assignments or re-weighting of terms. 

4.3.3 Indexing 

Indexing the database initially begins with the parsing of documents similar to the 

method discussed above, with the exception of ignoring duplicate terms and numerical 

values.  As stated earlier, each database and table combination within the document 

collection has been assigned a unique number.  This number, along with the document 

key within the database, is used to create a unique document identifier to determine its 

location if it is retrieved as a relevant document. 

Two types of indexing take place requiring only one run through the documents in 

the database.  The first type of indexing that occurs is column indexing.  Column 

indexing is used by the Query Tool to simulate the actions of the Boolean information 
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retrieval model.  As values, including numerical, are parsed, they are inserted under the 

appropriate column word along with the document identifier in which they appear.  An 

example of this architecture can be seen in Figure 17. 

In addition, the inverted file must also be updated to include the new copy of the 

word with the document identifier in which it was found for later use in the IR models 

discussed below.  The individual word architecture is a simplified version of the column 

word architecture as the column heading is ignored and the word becomes the word 

identifier and not just a value.  However, numerical values are ignored.  An example of 

this simplified architecture can be seen in Figure 18. 

Column Heading Name
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1000034
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Figure 17.  Column Word Architecture 
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Figure 18.  Word Architecture 
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As one might expect, the occurrence list of documents in which the word and 

column word values appear can grow very large as they appear in more documents.  A 

word with an occurrence list of any substantial length can require a significant amount of 

time to load into memory.  In addition, the word then must be written back out to the B-

Tree on disk.  This amount of disk I/O can significantly slow down the indexing process.  

Therefore, the idea of an external cache was implemented to limit the number of reads 

and writes to disk.  The VDL administrator determines the cache size based on the 

amount of memory available on the computer on which the indexing tool resides.  This is 

accomplished by specifying the maximum number of documents to be indexed and held 

in memory at any moment in time.  A typical computer can handle at least 10,000 

documents in memory at a time.  Once a word is parsed, the cache is checked to see if it 

has already been loaded from the B-Tree on disk.  If the word is found in the cache, then 

the word’s occurrence list is updated and saved back to the cache.  However, if the word 

is not presently in the cache, then it must be loaded from disk, updated, and saved back to 

the cache.  Once the number of documents has been indexed that was specified by the 

VDL administrator, the entire cache is written to disk and cleared.  It is written out to 

disk by iterating over each word in the cache and loading the same word from the B-Tree.  

The difference in the occurrence lists are updated from the word that was loaded from the 

B-Tree and then written back out to disk.  This significantly reduces the frequency of 

writes to and from disk.  The hash map data structure was selected due to its O(1) access 

time to determine whether a word is present in the cache and its O(1) retrieval time to 
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load a word from cache.  Once the inverted files of words and column words have been 

completed, the assignment of word weights takes place next. 

Only the number of documents the word appears in versus the size of the 

collection determines the word’s weights when not using a thesaurus.  However, when 

using a thesaurus, all words that are determined to be synonyms must contain the same 

weights.  Therefore, each word in the inverted file is expanded to take into account its 

synonyms and the documents in which they appear.  The word’s idf is calculated using 

this approach, however, the occurrence lists of the words are not changed to reflect the 

additional documents its synonyms may be present in. 

In addition, all categories in the hierarchy also contain a listing of all words that 

are contained under its sub-tree.  The category also contains all documents that are in the 

occurrence lists of these words.  This approach saves time during the query process by 

performing the necessary calculations during indexing and not during the query process. 

4.4 Query Tool 

The design of the Query Tool is developed with two major functions in mind.  

These functions and the manner in which they are implemented in this research are 

discussed in detail in the following sections. 

4.4.1 Relevant Image Filtering 

Relevant image filtering involves the use of the column word index that was 

created to mimic the attributes of the Boolean IR Model.  Users may select columns that 
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are of interest to them.  However, only column headings that have been assigned to 

categories are available.  In essence, the user selects a category that may contain multiple 

column headings or other categories to filter through documents.  Documents that do not 

meet all the users’ criteria are removed from the possible relevant document set. 

4.4.2 Relevant Image Ranking 

Once the filtering of documents has taken place and all documents that do not 

meet the user’s criteria have been removed, the remaining documents can be scored and 

ranked according to their relevance.  However, when using the thesaurus, the user may 

expand the query by selecting a category within the hierarchy.  All words in the selected 

categories’ sub-tree are added to the users query.  The documents that contain at least one 

of the words found in the query are kept; all others are removed since their relevance 

scores will be zero.  If the user does not enter a query, then documents that meet the 

user’s specified filtering criteria are returned with no ranking.  Now there are only 

documents that have at least one query term and have met the user’s criteria, the scoring 

and ranking of these documents may be accomplished through the use of one of the 

following algorithms. 

4.4.2.1 Vector Model 

The Vector model was implemented as presented in Chapter 2, with a few minor 

adjustments.  The Vector model’s formulas are shown below: 
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Where, freqi,j = raw frequency of term ki in docj and maxi freqi,j is the maximum 

freq. of all terms in docj, and 

i
i n

Nidf log=  

Where, N = total number of docs in the collection and ni = number of docs index 

term ki appears 

The index term weights are calculated by multiplying the results of the two 

formulas together as seen here: 

ijiji idffW •= ,,  

Where as the query weights were calculated using the following formula: 
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One of the changes involved the simplification of the query weights.  The 

assumption was made that the user would only enter the query word once, therefore 

reducing the query weights to the following: 
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In addition, the formula for the term weights were interpreted slightly differently 

than in Chapter 2.  This alternative approach is to only consider the maximum frequency 

in a document from the query terms and not the entire document itself.  The previous 
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approach tended to give an advantage in scoring to shorter documents since longer 

documents may contain more frequent words that were not contained in the user’s query.  

When only considering the terms in the query, the size of the document will have less of 

an influence on its score. 

4.4.2.2 Extended Boolean Model 

The Extended Boolean model as implemented in this research uses the P-norm 

value as discussed in Chapter 2.  The user has the option to select the value of p from one 

to five to simulate the Vector model or to use a more Boolean approach.  In addition, the 

AND operation was used exclusively over the OR operation.  This tends to rate 

documents containing multiple words in the query higher.  The formulas from Chapter 2 

for the Extended Boolean AND operation are shown below: 
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Where x = Wi,j 

4.5 Tool Demonstration 

This section begins with a presentation of the hardware and software used to 

develop the Hierarchical Thesaurus and Indexing Tool and the Query Tool.  It also 

presents an overview of the databases and queries by which these tools were tested. 
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4.5.1 Hardware and Software Platforms 

The two tools used in this research were developed in version 1.3 of the Java 

programming language.  The system on which these tools were tested had the following 

hardware specifications: 

• Intel Pentium III 550 MHz processor 

• 384 MB RAM 

4.5.2 Databases 

The relational database used in the testing phase of this research was Microsoft 

Access 2000 from the Microsoft Office 2000 suite.  It provided a mechanism to transform 

the .csv (comma separated) files into the desired tables with ease. 

4.5.2.1 Hierarchical Thesaurus Testing Databases 

The hierarchical thesaurus testing databases are comprised of three independent 

databases comprised of one table each.  Each table contains 25 records, or documents, 

with simulated images as would be expected in the VDL environment.  These documents 

were contrived due to the inability to gain access to the description field of the actual 

SDMS database within VDL.  Each database contains an ID field to uniquely identify 

each record, a description field, an object field, squint direction field, turret rotation field, 

barrel elevation field, and camouflage percentage field.  Figure 19 displays the 

hierarchies created to test the various characteristics of the thesaurus and stemming.  

Each of the three databases contains a different column heading to represent these fields. 
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Figure 19.  Created Hierarchies of Synonyms and Concepts for Testing 

In addition, the primary focus of these images, T-72 and T-62 tanks are represented in 

several spellings in the databases to test the thesaurus tool.  Another tank, the M1-A tank 

is included to test the hierarchical functionality of the thesaurus.  These databases were 

also written in several verb tenses to test the stemming capabilities of this hierarchical 

approach.  

4.5.2.2 Queries and Relevant Documents 

A set of four queries was developed to simulate actual queries that could be 

submitted to the system.  These queries were developed based on the knowledge of the 

contents of the databases.  After query development, an expert user of the documents 

identified relevant documents that should be returned by these tools. 

4.5.3 Evaluation Criteria 

The criteria used to evaluate the performance of the query tool using the inverted 

file with the Hierarchical Thesaurus is discussed in the next few sections.  Each of these 
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areas cover different aspects of the tools in this research with the most emphasis placed 

on the recall and precision measures. 

4.5.3.1 Indexing Speed 

The speed at which documents are indexed is not a truly important measure of the 

performance of the overall system.  However, it is an important performance measure of 

the indexing tool by itself.  For example, indexing a large document collection within a 

database should not take days to complete.  This is important because the current setup 

requires the Hierarchical Thesaurus and Indexing Tool to not be in use for the Query 

Tool to have access to the B-Tree data structure for the information required to score 

documents. 

4.5.3.2 Query Speed 

The amount of time the Query Tool uses to return relevant documents is an 

important statistical measure.  As the number of documents in the collection continues to 

grow, the amount of time to retrieve relevant documents will also grow.  However, this 

growth in time should not be directly proportional to the size of growth of the document 

collection.  Part of the solution to ensuring this does not occur was discussed previously.  

That is, not to score every document in the collection, but to only score documents that 

are in the occurrence list of the query words found in the inverted file.  This can 

significantly decrease the amount of time to query.  However, since no stop word lists 

were used and every word is indexed then the entire collection has the potential to be 

returned as relevant. 
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4.5.3.3 Relevant Document Retrieval 

Relevant document retrieval is the most important measure of the effectiveness of 

the Hierarchical Thesaurus and the Query Tool.  The primary goal of any tool returning 

relevant information is to put the most relevant information before the user first.  When 

documents are returned, the documents that are most relevant to the user should be scored 

the highest and therefore be ranked higher on the returned documents list.  There are two 

primary measures to determine the effectiveness of a relevant document retrieval tool, 

recall and precision.  Each of these measures are discussed in the following sections. 

4.5.3.4 Recall / Precision Variable Explanation 

Figure 20 shows the Venn Diagram representation of precision and recall. 

• |R| = the number of documents in the entire document collection 

• |A| = the number of documents returned by the query tool 

• |Ra| = the number of documents returned and also relevant 

 

Document Collection 
Relevant Docs 

|R| 
Answer Set 

|A| 

Relevant Docs 
in Answer Set 

|Ra| 

Document Collection 
Relevant Docs Answer Set 

Relevant Docs 
in Answer Set 

|Ra| 

 
Figure 20.  Variable Explanation for Precision and Recall 
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4.5.3.5 Precision vs. Recall 

The measure of precision is a proportion of the retrieved documents that is 

relevant, while recall is a proportion of the relevant material retrieved.  Both formulas can 

be seen below. 

||
||

A
Raprecision =    

||
||

R
Rarecall =  

Depending on their information needs, users may require a high recall, that is, the 

retrieval of any document that might be of interest.  At other times, users may require a 

high precision, meaning the rejection of documents that are likely to be useless.  

Precision and recall values can change over time as the user examines more documents to 

determine their relevance. Typically, good information retrieval systems should 

maximize both a high precision and a high recall.  It can be shown that the recall value 

increases as the number of documents returned increases, while precision decreases.  

Therefore, users interested in high recall tend to submit broader, more general queries, 

while users interested in higher precision tend to submit more specific queries [Salton, 

83].   

To determine the appropriate set of relevant documents, an expert in the area of 

the content of the documents must determine, given some query, which documents would 

be relevant and expected to be returned.  To better understand the precision and recall 

measures an example is provided below. Assume the following 

R q = {d1, d5, d6} 
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Where Rq is the set of relevant documents expected to be returned.  The following 

documents were returned for some query q: 

d1 d1 d8 d5 d3 d6 

The documents that are relevant to query q are bolded.  To calculate the precision 

and recall measures, first examine the returned set of documents from top to bottom and 

see that the first document returned is relevant, d1.  Since this document corresponds to 

33% of all relevant documents then it can be said that we have a precision of 100% at 

33% recall.  Looking at the next relevant document, d5, it is found at position four, 

consequently, it would have a precision of 50% at 66% recall.  Finally, the last relevant 

document would have 50% precision at 100% recall.  This information from several 

algorithms can be plotted in a precision vs. recall graph to examine certain trends.  

Typically, the better performing algorithm’s line will be closest to the upper right corner 

of the graph.  The precision recall graph from the above example can be seen in Figure 

21. 
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Figure 21.  Precision-Recall Graph for Example 
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4.5.4 Results 

4.5.4.1 Indexing Speed 

The indexing speed was tested using various sizes of cache to limit the number of 

reads and writes to the B-Tree on disk.  Results can be seen in Figure 22.  Increasing the 

cache size from 1000 to 10,000 documents can effectively reduce the amount of indexing 

time by 300%.  Note that the true indexing time, time spent not writing to disk, remains 

constant regardless of the cache size used. 
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Figure 22.  Indexing Speed with Various Levels of Caches 

 

4.5.4.2 Query Speed 

The query speed was tested on nine different databases ranging from 10,000 

records to 90,000 records in 10,000 record increments.  Identical queries were executed 

using the Vector and Extended Boolean model on each of the nine databases (Query 
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Terms:  Development, Self, T-72, T-62).  Variations of the Extended Boolean model 

were tried by varying the p-norm value from p=1 to p=3.  The results can be seen in 

Figure 23. 

As Figure 23 indicates, the query speed does grow linearly with the number of 

returned documents.  This is the exact scenario the tool was trying to avoid.  However, 

returning 90,000 documents to the user is unreasonable as most users would not want this 

many documents returned to search through to find their relevant documents. Therefore, 

users may take advantage of the filtering options of the query tool to narrow their search 

with more specific criteria. 

Query Speed

0

1000

2000

3000

4000

5000

6000

7000

8000

10000 20000 30000 40000 50000 60000 70000 80000 90000

N umber o f  R elevant  D ocument s

Vector
Ext . Boolean (p=1)
Ext . Boolean (p=2)
Ext . Boolean (p=3)

 
Figure 23.  Query Speed of Various IR Models 
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4.5.4.3 Relevant Document Retrieval 

The retrieval of relevant documents is the core function of the Query Tool.  The 

results of the execution of the four queries discussed above can be seen in Figures 24 

through Figure 27.  Each individual query listed below was selected to test the 

hierarchical functionality of the thesaurus, but also the stemming approach discussed 

earlier.  Without the thesaurus, the precision-recall graphs would go to zero, indicating 

that not all of the relevant documents have been returned, because no synonyms could be 

found within and across databases.  Therefore, only a partial list of relevant documents 

would be retrieved depending on the spelling of the word entered.  In addition, the test 

cases also indicate that the concept of a higher-level concept not found in the text of a 

document can also be located and scored.  However, the ranking of the documents tend to 

favor the words that has the highest weights, however, all relevant documents were 

retrieved.  In addition, the stemming approach appears to be a success.  Without 

stemming, the precision-recall graphs of queries 1 and 2 would go to zero. 

Queries: 

1. Tank being fired upon 

2. T-72 on bridge 

3. Tank firing weapons 

4. Tank with battle damage 
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However, there are some instances when the hierarchical thesaurus provided no 

increase in precision or recall.  This is because the thesaurus cannot take into account 

phrases that may have the same meaning as an individual word.  For instance, “battle 

damage” and “explosion” cannot be assigned synonyms of one another.  This is why the 

precision-recall graph of query 4 is so poor.  In addition, one must be careful when 

assigning words as synonyms of one another due to the possible multiple meanings of 

words. 
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Figure 24.  Precision-Recall Graph for Query 1 
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Figure 25.  Precision-Recall Graph for Query 2 
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Figure 26.  Precision-Recall Graph for Query 3 

 66



 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

Recall

Pr
ec

is
io

n Vector
Ext Bool (p=1)
Ext Bool (p=2)
Ext Bool (p=3)

 
Figure 27.  Precision-Recall Graph for Query 4 

4.6 Summary 

This chapter presents the implementation of the Hierarchical Thesaurus and 

Indexing Tool and Query Tool as outlined in Chapter 3.  The implementation of the 

Schema Integration Tool and the Query Tool follow the guidelines of the functional 

requirements of each tool discussed in Chapter 3.  During the implementation two key 

issues needed to be addressed, speed and memory.  The precision and recall evaluation 

criteria are the primary determinate of how well these tools function together.  

Ultimately, the precision-recall graphs indicate there is a significant improvement in 

performance when implementing the hierarchical concept thesaurus methodology to 

retrieve relevant documents from heterogeneous databases. 
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V. Conclusions and Future Work 

5.1 Summary of Research 

This research has developed two tools, which together, provide users a 

mechanism to retrieve relevant documents from multiple heterogeneous databases within 

the VDL environment. 

The first tool, the Hierarchical Thesaurus and Indexing Tool, has two major 

functional areas: hierarchical thesaurus creation and maintenance and document indexing.  

The hierarchical thesaurus provides the VDL administrator the capability to assign 

synonyms to words to alleviate the problems encountered within a multiple 

heterogeneous environment.  This tool not only allows word synonyms, but also a 

hierarchy of categories, or concepts, that contain other categories or additional words.  By 

taking this approach, stemming can also be accomplished, however without the space 

savings.  The tool also performs the indexing functions to create an inverted file of words 

in the document collection and the documents in which they appear.  The caching 

technique discussed in Chapter 3 and implemented in Chapter 4 provides increased speed 

when indexing a large number of documents in a database. 

The Query Tool has two major functions as well.  First the users may filter out 

undesired documents by specifying strict document filtering criteria before proceeding to 

the crucial step of retrieving relevant documents.  The tool uses the inverted file created 

by the thesaurus tool to rank and return potential relevant documents. 
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5.2 Results 

The initial results indicate the inclusion of a hierarchical thesaurus to map 

between various database schemas and data values significantly increase the precision-

recall levels within the VDL environment is an overwhelming success.  However, there 

are a number of areas that could be explored to possibly increase performance that are 

discussed in the next few sections. 

5.3 Future Research Recommendations 

Future research in information retrieval within the VDL area should focus on the 

incorporation of relevance feedback into the query tool.  In addition, extending this tool 

to work in a web-based environment for multiple users, and the evaluation of the 

indexing and query capabilities to determine possible increases in speed and reduction of 

memory should also be evaluated. 

5.3.1 Relevance Feedback 

Extending the Query Tool to incorporate relevance feedback from the user should 

be the next step in increasing the functionality of the tool.  This additional feature would 

allow a user to submit a second query with the characteristics of an ideal image that was 

retrieved by the initial query.  This could be implemented using image thumbnails to 

allow the user to view the images that are the most relevant.  This technique could be 

done any number of times by the user until they are satisfied with the returned results. 
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5.3.2 Phrase to Phrase and Phrase to Word Mapping 

Currently the system implemented in this research is constrained by only mapping 

individual words to other individual words.  The idea that multiple words mapping to 

either other multiple words or another single word should be explored to determine if this 

approach could increase system performance.   

5.3.3 Web-based Application for Multiple Users 

This research made the assumption that the databases, hierarchical thesaurus tool 

and query tool resided on the same computer.  The next logical step is to extend the query 

tool to work in a web-based environment.  This would allow multiple users from any 

where in the world to have access to the inverted file to retrieve relevant documents 

simultaneously. 

5.3.4 Increased Indexing and Query Retrieval Speed 

As seen in Chapter 4, the indexing speed is based on the size of the cache and the 

number of times the B-Tree is read and written to.  Perhaps, other techniques, such as a 

file-based approach along with a merge sort would provide a faster indexing speed.  In 

addition, the query speed increases directly proportional to the number of documents 

retrieved.  Once again, possibly a different methodology could provide increased 

performance for processing documents during a query submission. 
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5.4 Summary 

This work developed two tools, that when used together, can retrieve relevant 

documents from multiple heterogeneous relational databases.  The foundation of this 

system is based on a hierarchical thesaurus by which synonyms and higher-level concepts 

can be assigned. 

As a result of this work, AFRL/SN now has the capability to retrieve images from 

multiple databases, based on the metadata descriptions of the images found in the 

databases.  These images are scored and ranked by order of relevance to the user by 

applying various information retrieval techniques. 

The main focus of this research, the creation and maintenance of a hierarchical 

thesaurus has proven to dramatically increase the recall and precision by allowing users 

to submit synonyms and high-level concepts that may not be found directly in the 

document collection. 

Recommendations for future research in this area include the application of user 

relevance feedback based on documents returned from the initial query, the development 

of a web-based implementation of this tool to allow multiple users at the same time, and 

increased efficiency in document indexing and relevant document retrieval regardless of 

document collection size. 

In the future, the user can re-submit the query based on documents they have 

deemed relevant from the initial result set to pinpoint exactly what they are seeking. 
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A. Relevant Documents Retrieved 

A.1 Query 1 

Vector Ext Bool 1 Ext Bool 2 Ext Bool 3
* 3000016 * 3000016 * 3000016 * 3000016
* 1000025 * 1000025 * 1000025 * 1000025
1000021 1000021 * 1000024 1000015
1000017 1000017 * 1000020 * 1000024
3000019 3000019 1000015 * 1000020

* 1000024 * 1000024 3000023 3000023
* 1000020 * 1000020 * 3000021 * 3000021
1000015 1000015 1000021 1000021
3000023 3000023 1000017 1000017

* 3000021 * 3000021 3000019 3000019
3000015 3000015 3000015 3000015

* 3000008 * 3000008 * 3000008 * 3000008  
A.2 Query 2 

Vector Ext Bool 1 Ext Bool 2 Ext Bool 3
* 2000020 * 2000020 * 2000020 * 2000020
* 3000005 * 3000005 2000007 2000007

2000015 2000015
2000018 2000018

* 3000005 * 3000005  
A.3 Query 3 

3000020 3000020 3000020 * 3000021
* 3000023 * 3000023 * 3000023 * 3000023
* 1000024 * 1000024 * 1000024 * 1000024
1000020 1000020 1000020 1000020

* 1000015 * 1000015 * 1000015 * 1000015
3000025 * 3000021 * 3000021 3000020
3000024 3000016 3000016 3000016
3000022 * 3000015 * 3000015 * 3000015

* 3000021 3000025 3000025 3000008
1000025 3000024 3000024 * 3000007
1000002 3000022 3000022 * 3000006
1000001 1000025 1000025
3000019 1000002 1000002
3000018 1000001 1000001
3000017 3000008 3000008
3000016 * 3000007 * 3000007

* 3000015 * 3000006 * 3000006  
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1000023
1000022
1000021
1000019
1000018
1000017
1000016
1000014
1000013
2000008
2000007
2000005
2000004
2000003
2000002
2000001
3000014
3000013
3000012
3000011
3000010
3000009
3000008

* 3000007
* 3000006  

A.4 Query 4 

Vector Ext Bool 1 Ext Bool 2 Ext Bool 3
3000020 3000020 * 1000025 * 1000025
2000004 2000004 3000020 3000020
2000002 2000002 2000004 2000004

* 1000025 * 1000025 2000002 2000002
1000021 1000021 1000021 2000018
2000018 2000018 2000018 2000013
2000013 2000013 2000013 1000021
1000006 * 3000019 * 3000019 * 3000019
3000023 1000006 1000006 * 3000021
1000024 * 3000021 * 3000021 1000006

* 1000020 3000023 3000023 3000023
1000015 1000024 1000024 1000024
1000002 * 1000020 * 1000020 * 1000020
1000001 1000015 1000015 1000015
3000025 1000002 1000002 1000002
3000024 1000001 1000001 1000001
3000022 3000025 3000025 1000005

* 3000021 3000024 1000005 3000025  
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* 3000018 3000022 3000024 1000022
3000017 1000005 3000022 1000023
1000023 1000022 1000022 1000019
1000019 * 3000018 * 3000018 1000018
1000018 3000017 3000017 * 3000018
2000008 1000023 1000023 3000017
2000007 1000019 1000019 2000008
2000006 1000018 1000018 2000007
2000005 2000008 2000008 2000006
2000003 2000007 2000007 2000005
2000001 2000006 2000006 2000003

* 3000019 2000005 2000005 2000001
* 3000016 2000003 2000003 3000024
3000015 2000001 2000001 3000022
1000022 1000017 1000017 1000017
1000017 1000013 1000013 1000013
1000016 2000010 2000010 2000010
1000014 * 3000016 * 3000016 2000023
1000013 3000015 3000015 2000022
3000014 1000016 1000016 2000021
3000013 1000014 1000014 2000020
3000012 3000014 3000014 2000017
3000011 3000013 3000013 2000016
3000010 3000012 3000012 2000015
3000009 3000011 3000011 2000014

* 3000003 3000010 3000010 2000012
3000009 3000009 2000009

* 3000003 * 3000003 3000014
3000013
3000012
3000011
3000010
3000009

* 3000003
3000002
3000001
1000012
1000010
1000007
1000016
1000014

* 3000016  
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B. Query Speed 

B.1 Query Speed for 10,000 Documents 

10000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 660 880 550 600
2 710 550 550 600
3 550 550 540 600
4 490 880 870 600
5 770 550 550 600
6 490 550 600 940
7 440 940 550 610
8 770 550 880 600
9 490 550 550 540
10 490 550 600 610

Average 586 655 624 630
StdDev 128.2532 169.8529 134.0149 110.755  

B.2 Query Speed for 20,000 Documents 

20000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 1420 1590 1590 1210
2 990 1210 1380 1590
3 1260 1600 1590 1210
4 1370 1210 1210 1260
5 990 1650 1650 1600
6 1420 1150 1160 1200
7 990 1150 1700 1270
8 990 1480 1150 1650
9 930 1150 1210 1210
10 990 1150 1540 1210

Average 1135 1334 1418 1341
StdDev 205.6021 216.9588 219.5349 189.9386  
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B.3 Query Speed for 30,000 Documents 

30000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 1700 2470 2470 1920
2 1920 1870 1810 1980
3 1480 1810 1820 1920
4 1480 2080 2470 1920
5 1920 1810 1870 1920
6 1480 1870 1810 1980
7 1480 1810 2470 1930
8 2030 2250 1820 2360
9 1540 1870 1810 1920
10 1480 1870 2470 1920

Average 1651 1971 2082 1977
StdDev 223.4303 225.4107 334.3917 136.7926  

B.4 Query Speed for 40,000 Documents 

40000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 2200 2860 2420 2580
2 1970 2360 2360 2530
3 2470 3130 2410 3070
4 1980 2360 3080 2470
5 2030 2420 2410 2580
6 2420 2800 2410 3080
7 1920 2360 2860 2580
8 2800 2360 2310 2520
9 1980 2360 2420 3180
10 1980 2360 2910 2530

Average 2175 2537 2559 2712
StdDev 294.4769 284.1772 277.3065 278.2006  

B.5 Query Speed for 50,000 Documents 

50000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 2750 3070 3020 4060
2 3460 3790 3900 3240
3 2520 3020 3020 3180
4 3130 3790 3840 3130
5 2470 2970 3020 3130
6 3130 3740 3900 4120
7 2530 3020 2970 3180
8 3130 3790 2970 3180
9 2530 2970 3510 3960
10 3290 3900 3020 3130

Average 2894 3406 3317 3431
StdDev 372.6243 420.1904 419.5513 427.8486  
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B.6 Query Speed for 60,000 Documents 

60000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 3240 3740 3570 4890
2 3070 4450 4560 3790
3 3900 3630 3570 3790
4 3070 4510 4620 4510
5 3950 3630 3620 3790
6 3070 4670 3570 3790
7 4170 3620 4230 4440
8 3080 4720 3570 3790
9 3020 3570 4610 4890
10 3240 4560 3570 3850

Average 3381 4110 3949 4153
StdDev 443.0312 504.7772 490.5654 476.8892  

B.7 Query Speed for 70,000 Documents 

70000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 3850 5390 5390 5440
2 3680 4390 4340 4620
3 4560 5280 5280 5710
4 3620 4340 4340 4560
5 4560 5330 5440 5550
6 3630 4340 4340 4560
7 4730 5490 5270 5500
8 3620 4340 4340 4560
9 4720 5380 5320 5430
10 3680 4340 4340 4610

Average 4065 4862 4840 5054
StdDev 504.3423 542.4185 529.2972 503.6798  

B.8 Query Speed for 80,000 Documents 

80000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 550 5330 5980 6970
2 4450 6040 6040 6320
3 5330 6430 6480 6820
4 4450 5280 5280 5600
5 5110 5990 5980 6370
6 5600 6530 6480 6920
7 4440 5270 5270 5600
8 5160 5990 6040 6310
9 5600 6490 6540 6860
10 4450 5270 5330 5610

Average 4514 5862 5942 6338
StdDev 1473.026 532.3282 496.9865 564.1473  
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B.9 Query Speed for 90,000 Documents 

90000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 5160 7090 6970 7090
2 5830 7140 7200 7520
3 6150 7080 6970 7530
4 6040 7030 7140 7420
5 5880 7040 7190 7360
6 5930 7030 7030 7530
7 5980 7090 7200 7360
8 6040 7080 7140 7520
9 5870 7140 7090 7470
10 5980 7090 7090 7410

Average 5886 7081 7102 7421
StdDev 272.2825 39.5671 88.29244 134.5321  

B.10 Summation of Query Speeds 

Vector EB (P=1) EB (P=2) EB (P=3)
10000 586 655 624 630
20000 1135 1334 1418 1341
30000 1651 2082 2082 1977
40000 2175 2559 2559 2712
50000 2894 3317 3317 3431
60000 3381 3949 3949 4153
70000 4065 4840 4840 5054
80000 4514 5942 5942 6338
90000 5886 7102 7102 7421  
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